中心点表示:(x, y, z, l, w, h, \theta),其中(x,y,z)是中心坐标,(l,w,h)是长宽高,\theta是朝向角
角点表示:使用8个角点的3D坐标来完全描述边界框
参数化表示:结合物体的几何先验,使用更紧凑的参数表示
Code
graph TD subgraph 3D检测数据流 A[原始点云<br/>LiDAR/RGB-D] B[数据预处理<br/>滤波、下采样] C[特征表示<br/>体素/柱状/点] D[特征提取<br/>CNN/PointNet] E[检测头<br/>分类+回归] F[后处理<br/>NMS/聚合] end subgraph 表示方法 G[体素表示<br/>VoxelNet] H[柱状表示<br/>PointPillars] I[点表示<br/>PointRCNN] J[融合表示<br/>PV-RCNN] end subgraph 检测结果 K[3D边界框<br/>x,y,z,l,w,h,θ] L[置信度分数<br/>Classification] M[类别标签<br/>Car/Pedestrian/Cyclist] end A --> B --> C --> D --> E --> F C --> G C --> H C --> I C --> J F --> K F --> L F --> M classDef dataNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef methodNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef resultNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px class A,B,C,D,E,F dataNode class G,H,I,J methodNode class K,L,M resultNode
graph TD
subgraph 3D检测数据流
A[原始点云<br/>LiDAR/RGB-D]
B[数据预处理<br/>滤波、下采样]
C[特征表示<br/>体素/柱状/点]
D[特征提取<br/>CNN/PointNet]
E[检测头<br/>分类+回归]
F[后处理<br/>NMS/聚合]
end
subgraph 表示方法
G[体素表示<br/>VoxelNet]
H[柱状表示<br/>PointPillars]
I[点表示<br/>PointRCNN]
J[融合表示<br/>PV-RCNN]
end
subgraph 检测结果
K[3D边界框<br/>x,y,z,l,w,h,θ]
L[置信度分数<br/>Classification]
M[类别标签<br/>Car/Pedestrian/Cyclist]
end
A --> B --> C --> D --> E --> F
C --> G
C --> H
C --> I
C --> J
F --> K
F --> L
F --> M
classDef dataNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef methodNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef resultNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
class A,B,C,D,E,F dataNode
class G,H,I,J methodNode
class K,L,M resultNode
graph LR subgraph 传感器输入 A["LiDAR点云<br/>几何精确"] B["RGB图像<br/>语义丰富"] C["雷达数据<br/>速度信息"] end subgraph 特征提取 D["3D CNN<br/>空间特征"] E["2D CNN<br/>视觉特征"] F["时序网络<br/>运动特征"] end subgraph 融合策略 G["早期融合<br/>数据级融合"] H["中期融合<br/>特征级融合"] I["后期融合<br/>决策级融合"] end A --> D B --> E C --> F D --> G E --> H F --> I G --> J["融合检测结果"] H --> J I --> J classDef sensorNode fill:#4db6ac,stroke:#00796b,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef featureNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef fusionNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef resultNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef sensorSubgraph fill:#e0f2f1,stroke:#00796b,stroke-width:2px,color:#004d40,font-weight:bold classDef featureSubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold classDef fusionSubgraph fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#b71c1c,font-weight:bold class A,B,C sensorNode class D,E,F featureNode class G,H,I fusionNode class J resultNode class 传感器输入 sensorSubgraph class 特征提取 featureSubgraph class 融合策略 fusionSubgraph linkStyle 0,1,2,3,4,5,6,7,8 stroke-width:1.5px
graph LR
subgraph 传感器输入
A["LiDAR点云<br/>几何精确"]
B["RGB图像<br/>语义丰富"]
C["雷达数据<br/>速度信息"]
end
subgraph 特征提取
D["3D CNN<br/>空间特征"]
E["2D CNN<br/>视觉特征"]
F["时序网络<br/>运动特征"]
end
subgraph 融合策略
G["早期融合<br/>数据级融合"]
H["中期融合<br/>特征级融合"]
I["后期融合<br/>决策级融合"]
end
A --> D
B --> E
C --> F
D --> G
E --> H
F --> I
G --> J["融合检测结果"]
H --> J
I --> J
classDef sensorNode fill:#4db6ac,stroke:#00796b,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef featureNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef fusionNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef resultNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef sensorSubgraph fill:#e0f2f1,stroke:#00796b,stroke-width:2px,color:#004d40,font-weight:bold
classDef featureSubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold
classDef fusionSubgraph fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#b71c1c,font-weight:bold
class A,B,C sensorNode
class D,E,F featureNode
class G,H,I fusionNode
class J resultNode
class 传感器输入 sensorSubgraph
class 特征提取 featureSubgraph
class 融合策略 fusionSubgraph
linkStyle 0,1,2,3,4,5,6,7,8 stroke-width:1.5px
graph TD subgraph VoxelNet完整架构 A["原始点云<br/>N × 4 (x,y,z,r)"] --> B["体素化<br/>D×H×W网格"] B --> C["VFE层<br/>体素特征编码"] C --> D["3D卷积<br/>特征提取"] D --> E["RPN<br/>区域提议网络"] E --> F["3D检测结果<br/>(x,y,z,l,w,h,θ)"] end subgraph VFE层详细结构 G["体素内点集<br/>T × 7"] --> H["逐点MLP<br/>特征变换"] H --> I["局部聚合<br/>Max Pooling"] I --> J["体素特征<br/>固定维度"] end subgraph 关键创新 K["端到端学习<br/>点云到检测"] L["体素表示<br/>规则化数据"] M["VFE设计<br/>点集编码"] end C --> G J --> D A --> K B --> L C --> M classDef archNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef vfeNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef innovationNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef archSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold classDef vfeSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold classDef innovationSubgraph fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#b71c1c,font-weight:bold class A,B,C,D,E,F archNode class G,H,I,J vfeNode class K,L,M innovationNode class VoxelNet完整架构 archSubgraph class VFE层详细结构 vfeSubgraph class 关键创新 innovationSubgraph linkStyle 0,1,2,3,4,5,6,7,8,9,10,11 stroke-width:1.5px
graph TD
subgraph VoxelNet完整架构
A["原始点云<br/>N × 4 (x,y,z,r)"] --> B["体素化<br/>D×H×W网格"]
B --> C["VFE层<br/>体素特征编码"]
C --> D["3D卷积<br/>特征提取"]
D --> E["RPN<br/>区域提议网络"]
E --> F["3D检测结果<br/>(x,y,z,l,w,h,θ)"]
end
subgraph VFE层详细结构
G["体素内点集<br/>T × 7"] --> H["逐点MLP<br/>特征变换"]
H --> I["局部聚合<br/>Max Pooling"]
I --> J["体素特征<br/>固定维度"]
end
subgraph 关键创新
K["端到端学习<br/>点云到检测"]
L["体素表示<br/>规则化数据"]
M["VFE设计<br/>点集编码"]
end
C --> G
J --> D
A --> K
B --> L
C --> M
classDef archNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef vfeNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef innovationNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef archSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold
classDef vfeSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold
classDef innovationSubgraph fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#b71c1c,font-weight:bold
class A,B,C,D,E,F archNode
class G,H,I,J vfeNode
class K,L,M innovationNode
class VoxelNet完整架构 archSubgraph
class VFE层详细结构 vfeSubgraph
class 关键创新 innovationSubgraph
linkStyle 0,1,2,3,4,5,6,7,8,9,10,11 stroke-width:1.5px
graph TD subgraph KITTI数据集性能 A["传统方法<br/>mAP: 60-70%<br/>特点: 手工特征"] B["VoxelNet<br/>mAP: 77.5%<br/>特点: 端到端学习"] C["PointPillars<br/>mAP: 82.6%<br/>特点: 高效推理"] D["PV-RCNN<br/>mAP: 85.3%<br/>特点: 点体素融合"] end subgraph nuScenes数据集性能 E["传统方法<br/>NDS: 0.45<br/>局限: 复杂场景"] F["VoxelNet<br/>NDS: 0.52<br/>改进: 3D表示"] G["PointPillars<br/>NDS: 0.58<br/>改进: 实时性"] H["PV-RCNN<br/>NDS: 0.64<br/>改进: 精度提升"] end subgraph 计算效率对比 I["推理速度<br/>FPS"] J["内存占用<br/>GPU Memory"] K["训练时间<br/>Convergence"] end A --> E B --> F C --> G D --> H B --> I C --> J D --> K classDef tradNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef voxelNode fill:#64b5f6,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef pillarNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef pvNode fill:#4caf50,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef metricNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef kittiSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold classDef nuscenesSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold classDef efficiencySubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold class A,E tradNode class B,F,I voxelNode class C,G,J pillarNode class D,H,K pvNode class I,J,K metricNode class KITTI数据集性能 kittiSubgraph class nuScenes数据集性能 nuscenesSubgraph class 计算效率对比 efficiencySubgraph linkStyle 0,1,2,3,4,5,6 stroke-width:1.5px
graph TD
subgraph KITTI数据集性能
A["传统方法<br/>mAP: 60-70%<br/>特点: 手工特征"]
B["VoxelNet<br/>mAP: 77.5%<br/>特点: 端到端学习"]
C["PointPillars<br/>mAP: 82.6%<br/>特点: 高效推理"]
D["PV-RCNN<br/>mAP: 85.3%<br/>特点: 点体素融合"]
end
subgraph nuScenes数据集性能
E["传统方法<br/>NDS: 0.45<br/>局限: 复杂场景"]
F["VoxelNet<br/>NDS: 0.52<br/>改进: 3D表示"]
G["PointPillars<br/>NDS: 0.58<br/>改进: 实时性"]
H["PV-RCNN<br/>NDS: 0.64<br/>改进: 精度提升"]
end
subgraph 计算效率对比
I["推理速度<br/>FPS"]
J["内存占用<br/>GPU Memory"]
K["训练时间<br/>Convergence"]
end
A --> E
B --> F
C --> G
D --> H
B --> I
C --> J
D --> K
classDef tradNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef voxelNode fill:#64b5f6,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef pillarNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef pvNode fill:#4caf50,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef metricNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef kittiSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold
classDef nuscenesSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold
classDef efficiencySubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold
class A,E tradNode
class B,F,I voxelNode
class C,G,J pillarNode
class D,H,K pvNode
class I,J,K metricNode
class KITTI数据集性能 kittiSubgraph
class nuScenes数据集性能 nuscenesSubgraph
class 计算效率对比 efficiencySubgraph
linkStyle 0,1,2,3,4,5,6 stroke-width:1.5px
图11.31:3D目标检测算法在主要数据集上的性能对比
15.5.2 技术演进与创新点分析
Code
graph LR subgraph 技术演进路径 A["VoxelNet<br/>(2018)"] B["PointPillars<br/>(2019)"] C["PV-RCNN<br/>(2020)"] end subgraph 关键创新 D["体素化表示<br/>规则化点云"] E["柱状投影<br/>降维处理"] F["点体素融合<br/>优势互补"] end subgraph 性能提升 G["精度改善<br/>mAP +15%"] H["速度优化<br/>FPS +3x"] I["鲁棒性增强<br/>复杂场景"] end A --> B --> C A --> D B --> E C --> F D --> G E --> H F --> I classDef evolutionNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef innovationNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef improvementNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef evolutionSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold classDef innovationSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold classDef improvementSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold class A,B,C evolutionNode class D,E,F innovationNode class G,H,I improvementNode class 技术演进路径 evolutionSubgraph class 关键创新 innovationSubgraph class 性能提升 improvementSubgraph linkStyle 0,1,2,3,4,5,6,7 stroke-width:1.5px
graph LR
subgraph 技术演进路径
A["VoxelNet<br/>(2018)"]
B["PointPillars<br/>(2019)"]
C["PV-RCNN<br/>(2020)"]
end
subgraph 关键创新
D["体素化表示<br/>规则化点云"]
E["柱状投影<br/>降维处理"]
F["点体素融合<br/>优势互补"]
end
subgraph 性能提升
G["精度改善<br/>mAP +15%"]
H["速度优化<br/>FPS +3x"]
I["鲁棒性增强<br/>复杂场景"]
end
A --> B --> C
A --> D
B --> E
C --> F
D --> G
E --> H
F --> I
classDef evolutionNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef innovationNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef improvementNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef evolutionSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold
classDef innovationSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold
classDef improvementSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold
class A,B,C evolutionNode
class D,E,F innovationNode
class G,H,I improvementNode
class 技术演进路径 evolutionSubgraph
class 关键创新 innovationSubgraph
class 性能提升 improvementSubgraph
linkStyle 0,1,2,3,4,5,6,7 stroke-width:1.5px
图11.32:3D目标检测技术的演进路径与性能提升
15.5.3 应用场景与挑战分析
Code
graph TD subgraph 自动驾驶应用 A["车辆检测<br/>高精度要求"] B["行人检测<br/>安全关键"] C["骑行者检测<br/>复杂运动"] end subgraph 机器人应用 D["室内导航<br/>实时性要求"] E["物体抓取<br/>精确定位"] F["场景理解<br/>语义分析"] end subgraph 技术挑战 G["远距离检测<br/>点云稀疏"] H["小目标检测<br/>特征不足"] I["遮挡处理<br/>部分可见"] J["实时性要求<br/>计算约束"] end subgraph 解决方案 K["多尺度特征<br/>FPN架构"] L["数据增强<br/>样本扩充"] M["注意力机制<br/>特征增强"] N["模型压缩<br/>效率优化"] end A --> G B --> H C --> I D --> J E --> G F --> H G --> K H --> L I --> M J --> N classDef autoNode fill:#4db6ac,stroke:#00796b,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef robotNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef challengeNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef solutionNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef autoSubgraph fill:#e0f2f1,stroke:#00796b,stroke-width:2px,color:#004d40,font-weight:bold classDef robotSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold classDef challengeSubgraph fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#b71c1c,font-weight:bold classDef solutionSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold class A,B,C autoNode class D,E,F robotNode class G,H,I,J challengeNode class K,L,M,N solutionNode class 自动驾驶应用 autoSubgraph class 机器人应用 robotSubgraph class 技术挑战 challengeSubgraph class 解决方案 solutionSubgraph linkStyle 0,1,2,3,4,5,6,7,8,9 stroke-width:1.5px
graph TD
subgraph 自动驾驶应用
A["车辆检测<br/>高精度要求"]
B["行人检测<br/>安全关键"]
C["骑行者检测<br/>复杂运动"]
end
subgraph 机器人应用
D["室内导航<br/>实时性要求"]
E["物体抓取<br/>精确定位"]
F["场景理解<br/>语义分析"]
end
subgraph 技术挑战
G["远距离检测<br/>点云稀疏"]
H["小目标检测<br/>特征不足"]
I["遮挡处理<br/>部分可见"]
J["实时性要求<br/>计算约束"]
end
subgraph 解决方案
K["多尺度特征<br/>FPN架构"]
L["数据增强<br/>样本扩充"]
M["注意力机制<br/>特征增强"]
N["模型压缩<br/>效率优化"]
end
A --> G
B --> H
C --> I
D --> J
E --> G
F --> H
G --> K
H --> L
I --> M
J --> N
classDef autoNode fill:#4db6ac,stroke:#00796b,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef robotNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef challengeNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef solutionNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef autoSubgraph fill:#e0f2f1,stroke:#00796b,stroke-width:2px,color:#004d40,font-weight:bold
classDef robotSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold
classDef challengeSubgraph fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#b71c1c,font-weight:bold
classDef solutionSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold
class A,B,C autoNode
class D,E,F robotNode
class G,H,I,J challengeNode
class K,L,M,N solutionNode
class 自动驾驶应用 autoSubgraph
class 机器人应用 robotSubgraph
class 技术挑战 challengeSubgraph
class 解决方案 solutionSubgraph
linkStyle 0,1,2,3,4,5,6,7,8,9 stroke-width:1.5px
图11.33:3D目标检测在不同应用场景中的挑战与解决方案
15.5.4 未来发展趋势
Code
graph TD subgraph 当前技术水平 A["单模态检测<br/>LiDAR为主"] B["离线处理<br/>批量推理"] C["固定架构<br/>人工设计"] end subgraph 发展趋势 D["多模态融合<br/>LiDAR+Camera+Radar"] E["实时检测<br/>边缘计算"] F["自适应架构<br/>神经架构搜索"] G["端到端学习<br/>感知-规划一体化"] end subgraph 技术突破点 H["Transformer架构<br/>长距离建模"] I["自监督学习<br/>减少标注依赖"] J["联邦学习<br/>数据隐私保护"] K["量化压缩<br/>移动端部署"] end A --> D B --> E C --> F A --> G D --> H E --> I F --> J G --> K classDef currentNode fill:#64b5f6,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef trendNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef breakthroughNode fill:#4caf50,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef currentSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold classDef trendSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold classDef breakthroughSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold class A,B,C currentNode class D,E,F,G trendNode class H,I,J,K breakthroughNode class 当前技术水平 currentSubgraph class 发展趋势 trendSubgraph class 技术突破点 breakthroughSubgraph linkStyle 0,1,2,3,4,5,6,7 stroke-width:1.5px
graph TD
subgraph 当前技术水平
A["单模态检测<br/>LiDAR为主"]
B["离线处理<br/>批量推理"]
C["固定架构<br/>人工设计"]
end
subgraph 发展趋势
D["多模态融合<br/>LiDAR+Camera+Radar"]
E["实时检测<br/>边缘计算"]
F["自适应架构<br/>神经架构搜索"]
G["端到端学习<br/>感知-规划一体化"]
end
subgraph 技术突破点
H["Transformer架构<br/>长距离建模"]
I["自监督学习<br/>减少标注依赖"]
J["联邦学习<br/>数据隐私保护"]
K["量化压缩<br/>移动端部署"]
end
A --> D
B --> E
C --> F
A --> G
D --> H
E --> I
F --> J
G --> K
classDef currentNode fill:#64b5f6,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef trendNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef breakthroughNode fill:#4caf50,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef currentSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold
classDef trendSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold
classDef breakthroughSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold
class A,B,C currentNode
class D,E,F,G trendNode
class H,I,J,K breakthroughNode
class 当前技术水平 currentSubgraph
class 发展趋势 trendSubgraph
class 技术突破点 breakthroughSubgraph
linkStyle 0,1,2,3,4,5,6,7 stroke-width:1.5px