RGB-D重建利用深度相机(如Kinect、RealSense)提供的彩色图像和深度图像进行三维重建。深度信息的直接获取大大简化了重建过程,使得实时重建成为可能。TSDF(Truncated Signed Distance Function)融合是RGB-D重建的核心技术,它将多帧深度数据融合到统一的体素网格中。
Code
graph TD subgraph 传统SfM重建 A["多视图图像"] B["特征提取与匹配"] C["相机姿态估计"] D["三角测量"] E["束调整优化"] end subgraph RGB-D重建 F["RGB-D图像序列"] G["相机跟踪"] H["深度图配准"] I["TSDF融合"] J["网格提取"] end subgraph 神经网络重建 K["稀疏视图"] L["神经辐射场"] M["体渲染"] N["新视图合成"] O["几何提取"] end A --> B --> C --> D --> E F --> G --> H --> I --> J K --> L --> M --> N --> O classDef sfmNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef rgbdNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef neuralNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef sfmSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold classDef rgbdSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold classDef neuralSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold class A,B,C,D,E sfmNode class F,G,H,I,J rgbdNode class K,L,M,N,O neuralNode class 传统SfM重建 sfmSubgraph class RGB-D重建 rgbdSubgraph class 神经网络重建 neuralSubgraph linkStyle 0,1,2,3 stroke:#1565c0,stroke-width:2px linkStyle 4,5,6,7 stroke:#2e7d32,stroke-width:2px linkStyle 8,9,10,11 stroke:#7b1fa2,stroke-width:2px
graph TD
subgraph 传统SfM重建
A["多视图图像"]
B["特征提取与匹配"]
C["相机姿态估计"]
D["三角测量"]
E["束调整优化"]
end
subgraph RGB-D重建
F["RGB-D图像序列"]
G["相机跟踪"]
H["深度图配准"]
I["TSDF融合"]
J["网格提取"]
end
subgraph 神经网络重建
K["稀疏视图"]
L["神经辐射场"]
M["体渲染"]
N["新视图合成"]
O["几何提取"]
end
A --> B --> C --> D --> E
F --> G --> H --> I --> J
K --> L --> M --> N --> O
classDef sfmNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef rgbdNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef neuralNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef sfmSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold
classDef rgbdSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold
classDef neuralSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold
class A,B,C,D,E sfmNode
class F,G,H,I,J rgbdNode
class K,L,M,N,O neuralNode
class 传统SfM重建 sfmSubgraph
class RGB-D重建 rgbdSubgraph
class 神经网络重建 neuralSubgraph
linkStyle 0,1,2,3 stroke:#1565c0,stroke-width:2px
linkStyle 4,5,6,7 stroke:#2e7d32,stroke-width:2px
linkStyle 8,9,10,11 stroke:#7b1fa2,stroke-width:2px
graph LR subgraph TSDF融合过程 A["深度图1<br/>Frame t"] B["深度图2<br/>Frame t+1"] C["深度图N<br/>Frame t+n"] end subgraph 体素网格 D["TSDF值<br/>有符号距离"] E["权重值<br/>置信度"] F["颜色值<br/>RGB信息"] end subgraph 表面重建 G["Marching Cubes<br/>等值面提取"] H["三角网格<br/>Mesh"] end A --> D B --> D C --> D A --> E B --> E C --> E A --> F B --> F C --> F D --> G E --> G F --> G G --> H classDef depthNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef voxelNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef meshNode fill:#4caf50,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef depthSubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold classDef voxelSubgraph fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#b71c1c,font-weight:bold classDef meshSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold class A,B,C depthNode class D,E,F voxelNode class G,H meshNode class TSDF融合过程 depthSubgraph class 体素网格 voxelSubgraph class 表面重建 meshSubgraph linkStyle 0,1,2,3,4,5,6,7,8,9,10,11,12 stroke-width:1.5px
graph LR
subgraph TSDF融合过程
A["深度图1<br/>Frame t"]
B["深度图2<br/>Frame t+1"]
C["深度图N<br/>Frame t+n"]
end
subgraph 体素网格
D["TSDF值<br/>有符号距离"]
E["权重值<br/>置信度"]
F["颜色值<br/>RGB信息"]
end
subgraph 表面重建
G["Marching Cubes<br/>等值面提取"]
H["三角网格<br/>Mesh"]
end
A --> D
B --> D
C --> D
A --> E
B --> E
C --> E
A --> F
B --> F
C --> F
D --> G
E --> G
F --> G
G --> H
classDef depthNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef voxelNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef meshNode fill:#4caf50,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef depthSubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold
classDef voxelSubgraph fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#b71c1c,font-weight:bold
classDef meshSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold
class A,B,C depthNode
class D,E,F voxelNode
class G,H meshNode
class TSDF融合过程 depthSubgraph
class 体素网格 voxelSubgraph
class 表面重建 meshSubgraph
linkStyle 0,1,2,3,4,5,6,7,8,9,10,11,12 stroke-width:1.5px
图11.13:TSDF融合的数据流程和体素网格表示
12.3 理论基础:从多视图几何到神经隐式表示
三维重建的理论基础涵盖了传统几何方法和现代神经网络方法,下面我们分别介绍这些方法的核心理论。
12.3.1 运动恢复结构(SfM)的理论基础
SfM的理论基础是多视图几何和投影模型。对于空间中的点\mathbf{X} = (X, Y, Z, 1)^T,其在图像i中的投影点\mathbf{x}_i = (u_i, v_i, 1)^T满足:
graph TD subgraph 传统SfM方法 A["COLMAP<br/>精度: 高<br/>速度: 慢<br/>内存: 中"] B["OpenMVG<br/>精度: 中<br/>速度: 中<br/>内存: 低"] C["VisualSFM<br/>精度: 中<br/>速度: 快<br/>内存: 低"] end subgraph RGB-D重建方法 D["KinectFusion<br/>精度: 中<br/>速度: 快<br/>内存: 高"] E["ElasticFusion<br/>精度: 高<br/>速度: 中<br/>内存: 高"] F["BundleFusion<br/>精度: 很高<br/>速度: 慢<br/>内存: 很高"] end subgraph 神经网络方法 G["NeRF<br/>精度: 很高<br/>速度: 很慢<br/>内存: 中"] H["Instant-NGP<br/>精度: 高<br/>速度: 快<br/>内存: 低"] I["DVGO<br/>精度: 高<br/>速度: 中<br/>内存: 高"] end subgraph 评估指标 J["重建精度<br/>几何误差"] K["纹理质量<br/>视觉效果"] L["计算效率<br/>时间复杂度"] end A --> J B --> J C --> J D --> J E --> J F --> J G --> J H --> J I --> J J --> M["SfM: mm级<br/>RGB-D: cm级<br/>NeRF: sub-mm级"] K --> N["SfM: 中等<br/>RGB-D: 低<br/>NeRF: 很高"] L --> O["SfM: 小时级<br/>RGB-D: 实时<br/>NeRF: 天级"] classDef sfmNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef rgbdNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef neuralNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef metricNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef resultNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef sfmSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold classDef rgbdSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold classDef neuralSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold class A,B,C sfmNode class D,E,F rgbdNode class G,H,I neuralNode class J,K,L metricNode class M,N,O resultNode class 传统SfM方法 sfmSubgraph class RGB-D重建方法 rgbdSubgraph class 神经网络方法 neuralSubgraph linkStyle 0,1,2,3,4,5,6,7,8 stroke:#1565c0,stroke-width:1.5px linkStyle 9,10,11 stroke:#4caf50,stroke-width:1.5px
graph TD
subgraph 传统SfM方法
A["COLMAP<br/>精度: 高<br/>速度: 慢<br/>内存: 中"]
B["OpenMVG<br/>精度: 中<br/>速度: 中<br/>内存: 低"]
C["VisualSFM<br/>精度: 中<br/>速度: 快<br/>内存: 低"]
end
subgraph RGB-D重建方法
D["KinectFusion<br/>精度: 中<br/>速度: 快<br/>内存: 高"]
E["ElasticFusion<br/>精度: 高<br/>速度: 中<br/>内存: 高"]
F["BundleFusion<br/>精度: 很高<br/>速度: 慢<br/>内存: 很高"]
end
subgraph 神经网络方法
G["NeRF<br/>精度: 很高<br/>速度: 很慢<br/>内存: 中"]
H["Instant-NGP<br/>精度: 高<br/>速度: 快<br/>内存: 低"]
I["DVGO<br/>精度: 高<br/>速度: 中<br/>内存: 高"]
end
subgraph 评估指标
J["重建精度<br/>几何误差"]
K["纹理质量<br/>视觉效果"]
L["计算效率<br/>时间复杂度"]
end
A --> J
B --> J
C --> J
D --> J
E --> J
F --> J
G --> J
H --> J
I --> J
J --> M["SfM: mm级<br/>RGB-D: cm级<br/>NeRF: sub-mm级"]
K --> N["SfM: 中等<br/>RGB-D: 低<br/>NeRF: 很高"]
L --> O["SfM: 小时级<br/>RGB-D: 实时<br/>NeRF: 天级"]
classDef sfmNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef rgbdNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef neuralNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef metricNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef resultNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef sfmSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold
classDef rgbdSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold
classDef neuralSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold
class A,B,C sfmNode
class D,E,F rgbdNode
class G,H,I neuralNode
class J,K,L metricNode
class M,N,O resultNode
class 传统SfM方法 sfmSubgraph
class RGB-D重建方法 rgbdSubgraph
class 神经网络方法 neuralSubgraph
linkStyle 0,1,2,3,4,5,6,7,8 stroke:#1565c0,stroke-width:1.5px
linkStyle 9,10,11 stroke:#4caf50,stroke-width:1.5px
图11.14:不同三维重建方法的性能对比分析
12.5.2 应用场景适应性
Code
graph LR subgraph 室外大场景 A["文化遗产保护<br/>高精度要求"] B["城市建模<br/>大规模重建"] C["地形测绘<br/>几何精度优先"] end subgraph 室内小场景 D["AR/VR应用<br/>实时性要求"] E["机器人导航<br/>动态更新"] F["医疗重建<br/>高精度要求"] end subgraph 特殊场景 G["弱纹理环境<br/>几何约束"] H["动态场景<br/>时序一致性"] I["稀疏视图<br/>先验知识"] end A --> J["SfM + 摄影测量<br/>精度: 很高<br/>成本: 低"] B --> K["SfM + 航拍<br/>精度: 高<br/>成本: 中"] C --> J D --> L["RGB-D实时重建<br/>精度: 中<br/>成本: 中"] E --> L F --> M["高精度RGB-D<br/>精度: 很高<br/>成本: 高"] G --> N["几何约束SfM<br/>精度: 中<br/>成本: 低"] H --> O["动态NeRF<br/>精度: 高<br/>成本: 很高"] I --> P["NeRF + 先验<br/>精度: 很高<br/>成本: 高"] classDef outdoorNode fill:#4db6ac,stroke:#00796b,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef indoorNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef specialNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef solutionNode fill:#90caf9,stroke:#1976d2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef outdoorSubgraph fill:#e0f2f1,stroke:#00796b,stroke-width:2px,color:#004d40,font-weight:bold classDef indoorSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold classDef specialSubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold class A,B,C outdoorNode class D,E,F indoorNode class G,H,I specialNode class J,K,L,M,N,O,P solutionNode class 室外大场景 outdoorSubgraph class 室内小场景 indoorSubgraph class 特殊场景 specialSubgraph linkStyle 0,1,2,3,4,5,6,7,8 stroke-width:1.5px
graph LR
subgraph 室外大场景
A["文化遗产保护<br/>高精度要求"]
B["城市建模<br/>大规模重建"]
C["地形测绘<br/>几何精度优先"]
end
subgraph 室内小场景
D["AR/VR应用<br/>实时性要求"]
E["机器人导航<br/>动态更新"]
F["医疗重建<br/>高精度要求"]
end
subgraph 特殊场景
G["弱纹理环境<br/>几何约束"]
H["动态场景<br/>时序一致性"]
I["稀疏视图<br/>先验知识"]
end
A --> J["SfM + 摄影测量<br/>精度: 很高<br/>成本: 低"]
B --> K["SfM + 航拍<br/>精度: 高<br/>成本: 中"]
C --> J
D --> L["RGB-D实时重建<br/>精度: 中<br/>成本: 中"]
E --> L
F --> M["高精度RGB-D<br/>精度: 很高<br/>成本: 高"]
G --> N["几何约束SfM<br/>精度: 中<br/>成本: 低"]
H --> O["动态NeRF<br/>精度: 高<br/>成本: 很高"]
I --> P["NeRF + 先验<br/>精度: 很高<br/>成本: 高"]
classDef outdoorNode fill:#4db6ac,stroke:#00796b,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef indoorNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef specialNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef solutionNode fill:#90caf9,stroke:#1976d2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef outdoorSubgraph fill:#e0f2f1,stroke:#00796b,stroke-width:2px,color:#004d40,font-weight:bold
classDef indoorSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold
classDef specialSubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold
class A,B,C outdoorNode
class D,E,F indoorNode
class G,H,I specialNode
class J,K,L,M,N,O,P solutionNode
class 室外大场景 outdoorSubgraph
class 室内小场景 indoorSubgraph
class 特殊场景 specialSubgraph
linkStyle 0,1,2,3,4,5,6,7,8 stroke-width:1.5px
图11.15:三维重建方法在不同应用场景中的适应性
12.5.3 技术发展趋势
Code
graph TD subgraph 传统方法演进 A[早期SfM<br/>2000-2010] B[增量式SfM<br/>2010-2015] C[全局SfM<br/>2015-2020] end subgraph 深度传感器融合 D[KinectFusion<br/>2011] E[ElasticFusion<br/>2015] F[BundleFusion<br/>2017] end subgraph 神经网络革命 G[NeRF<br/>2020] H[Instant-NGP<br/>2022] I[3D Gaussian<br/>2023] end subgraph 未来发展方向 J[实时神经重建] K[多模态融合] L[语义感知重建] M[自监督学习] end A --> B --> C D --> E --> F G --> H --> I C --> J F --> K I --> L I --> M classDef tradNode fill:#64b5f6,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef rgbdNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef neuralNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef futureNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px class A,B,C tradNode class D,E,F rgbdNode class G,H,I neuralNode class J,K,L,M futureNode
graph TD
subgraph 传统方法演进
A[早期SfM<br/>2000-2010]
B[增量式SfM<br/>2010-2015]
C[全局SfM<br/>2015-2020]
end
subgraph 深度传感器融合
D[KinectFusion<br/>2011]
E[ElasticFusion<br/>2015]
F[BundleFusion<br/>2017]
end
subgraph 神经网络革命
G[NeRF<br/>2020]
H[Instant-NGP<br/>2022]
I[3D Gaussian<br/>2023]
end
subgraph 未来发展方向
J[实时神经重建]
K[多模态融合]
L[语义感知重建]
M[自监督学习]
end
A --> B --> C
D --> E --> F
G --> H --> I
C --> J
F --> K
I --> L
I --> M
classDef tradNode fill:#64b5f6,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef rgbdNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef neuralNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef futureNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
class A,B,C tradNode
class D,E,F rgbdNode
class G,H,I neuralNode
class J,K,L,M futureNode