graph TD subgraph PointNet核心架构 A["输入点云<br/>N × 3"] B["共享MLP<br/>特征提取"] C["点特征<br/>N × 1024"] D["对称函数<br/>Max Pooling"] E["全局特征<br/>1 × 1024"] end subgraph 置换不变性保证 F["点排列1<br/>[p1,p2,p3]"] G["点排列2<br/>[p3,p1,p2]"] H["点排列3<br/>[p2,p3,p1]"] end subgraph 网络输出 I["分类结果<br/>类别概率"] J["分割结果<br/>点级标签"] end A --> B --> C --> D --> E F --> A G --> A H --> A E --> I C --> J classDef coreNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef permNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef outputNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef coreSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold classDef permSubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold classDef outputSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold class A,B,C,D,E coreNode class F,G,H permNode class I,J outputNode class PointNet核心架构 coreSubgraph class 置换不变性保证 permSubgraph class 网络输出 outputSubgraph linkStyle 0,1,2,3,4,5,6,7,8 stroke-width:1.5px
graph TD
subgraph PointNet核心架构
A["输入点云<br/>N × 3"]
B["共享MLP<br/>特征提取"]
C["点特征<br/>N × 1024"]
D["对称函数<br/>Max Pooling"]
E["全局特征<br/>1 × 1024"]
end
subgraph 置换不变性保证
F["点排列1<br/>[p1,p2,p3]"]
G["点排列2<br/>[p3,p1,p2]"]
H["点排列3<br/>[p2,p3,p1]"]
end
subgraph 网络输出
I["分类结果<br/>类别概率"]
J["分割结果<br/>点级标签"]
end
A --> B --> C --> D --> E
F --> A
G --> A
H --> A
E --> I
C --> J
classDef coreNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef permNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef outputNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef coreSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold
classDef permSubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold
classDef outputSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold
class A,B,C,D,E coreNode
class F,G,H permNode
class I,J outputNode
class PointNet核心架构 coreSubgraph
class 置换不变性保证 permSubgraph
class 网络输出 outputSubgraph
linkStyle 0,1,2,3,4,5,6,7,8 stroke-width:1.5px
graph LR subgraph PointNet特点 A["全局特征<br/>整体形状"] B["置换不变<br/>顺序无关"] C["简单高效<br/>易于实现"] end subgraph PointNet++特点 D["层次特征<br/>局部+全局"] E["多尺度<br/>不同分辨率"] F["鲁棒性强<br/>密度变化"] end subgraph Point-Transformer特点 G["自注意力<br/>长距离依赖"] H["位置编码<br/>几何感知"] I["表达能力强<br/>复杂结构"] end A --> D B --> E C --> F D --> G E --> H F --> I classDef pointnetNode fill:#64b5f6,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef pointnet2Node fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef transformerNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef pointnetSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold classDef pointnet2Subgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold classDef transformerSubgraph fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#b71c1c,font-weight:bold class A,B,C pointnetNode class D,E,F pointnet2Node class G,H,I transformerNode class PointNet特点 pointnetSubgraph class PointNet++特点 pointnet2Subgraph class Point-Transformer特点 transformerSubgraph linkStyle 0,1,2,3,4,5 stroke-width:1.5px
graph LR
subgraph PointNet特点
A["全局特征<br/>整体形状"]
B["置换不变<br/>顺序无关"]
C["简单高效<br/>易于实现"]
end
subgraph PointNet++特点
D["层次特征<br/>局部+全局"]
E["多尺度<br/>不同分辨率"]
F["鲁棒性强<br/>密度变化"]
end
subgraph Point-Transformer特点
G["自注意力<br/>长距离依赖"]
H["位置编码<br/>几何感知"]
I["表达能力强<br/>复杂结构"]
end
A --> D
B --> E
C --> F
D --> G
E --> H
F --> I
classDef pointnetNode fill:#64b5f6,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef pointnet2Node fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef transformerNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef pointnetSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold
classDef pointnet2Subgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold
classDef transformerSubgraph fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#b71c1c,font-weight:bold
class A,B,C pointnetNode
class D,E,F pointnet2Node
class G,H,I transformerNode
class PointNet特点 pointnetSubgraph
class PointNet++特点 pointnet2Subgraph
class Point-Transformer特点 transformerSubgraph
linkStyle 0,1,2,3,4,5 stroke-width:1.5px
graph TD subgraph PointNet详细架构 A["输入点云<br/>N × 3"] --> B["T-Net<br/>输入变换<br/>3×3矩阵"] B --> C["MLP<br/>64-64维<br/>逐点变换"] C --> D["T-Net<br/>特征变换<br/>64×64矩阵"] D --> E["MLP<br/>64-128-1024维<br/>深层特征"] E --> F["Max Pooling<br/>对称聚合<br/>1×1024"] F --> G["MLP<br/>512-256-k维<br/>分类输出"] end subgraph 关键创新点 H["置换不变性<br/>对称函数max"] I["几何鲁棒性<br/>T-Net变换"] J["理论保证<br/>万能逼近"] end subgraph 损失函数 K["分类损失<br/>交叉熵"] L["正则化损失<br/>变换矩阵"] M["总损失<br/>加权组合"] end F --> H B --> I D --> I G --> J G --> K D --> L K --> M L --> M classDef archNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef innovationNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef lossNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef archSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold classDef innovationSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold classDef lossSubgraph fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#b71c1c,font-weight:bold class A,B,C,D,E,F,G archNode class H,I,J innovationNode class K,L,M lossNode class PointNet详细架构 archSubgraph class 关键创新点 innovationSubgraph class 损失函数 lossSubgraph linkStyle 0,1,2,3,4,5,6,7,8,9,10,11,12,13 stroke-width:1.5px
graph TD
subgraph PointNet详细架构
A["输入点云<br/>N × 3"] --> B["T-Net<br/>输入变换<br/>3×3矩阵"]
B --> C["MLP<br/>64-64维<br/>逐点变换"]
C --> D["T-Net<br/>特征变换<br/>64×64矩阵"]
D --> E["MLP<br/>64-128-1024维<br/>深层特征"]
E --> F["Max Pooling<br/>对称聚合<br/>1×1024"]
F --> G["MLP<br/>512-256-k维<br/>分类输出"]
end
subgraph 关键创新点
H["置换不变性<br/>对称函数max"]
I["几何鲁棒性<br/>T-Net变换"]
J["理论保证<br/>万能逼近"]
end
subgraph 损失函数
K["分类损失<br/>交叉熵"]
L["正则化损失<br/>变换矩阵"]
M["总损失<br/>加权组合"]
end
F --> H
B --> I
D --> I
G --> J
G --> K
D --> L
K --> M
L --> M
classDef archNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef innovationNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef lossNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef archSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold
classDef innovationSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold
classDef lossSubgraph fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#b71c1c,font-weight:bold
class A,B,C,D,E,F,G archNode
class H,I,J innovationNode
class K,L,M lossNode
class PointNet详细架构 archSubgraph
class 关键创新点 innovationSubgraph
class 损失函数 lossSubgraph
linkStyle 0,1,2,3,4,5,6,7,8,9,10,11,12,13 stroke-width:1.5px
graph TD subgraph 分类任务性能 A["传统方法<br/>准确率: 70-80%<br/>特征: 手工设计"] B["PointNet<br/>准确率: 89.2%<br/>特征: 端到端学习"] C["PointNet++<br/>准确率: 91.9%<br/>特征: 层次化表示"] D["Point-Transformer<br/>准确率: 93.7%<br/>特征: 自注意力"] end subgraph 分割任务性能 E["传统方法<br/>mIoU: 60-70%<br/>依赖: 几何特征"] F["PointNet<br/>mIoU: 83.7%<br/>依赖: 全局特征"] G["PointNet++<br/>mIoU: 85.1%<br/>依赖: 局部+全局"] H["Point-Transformer<br/>mIoU: 87.3%<br/>依赖: 长距离关系"] end subgraph 计算效率 I["推理速度<br/>FPS"] J["内存占用<br/>GPU Memory"] K["训练时间<br/>Convergence"] end A --> E B --> F C --> G D --> H B --> I C --> J D --> K classDef tradNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef pointnetNode fill:#64b5f6,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef pointnet2Node fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef transformerNode fill:#4caf50,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef metricNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef classSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold classDef segSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold classDef efficiencySubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold class A tradNode class B,I pointnetNode class C,G,J pointnet2Node class D,H,K transformerNode class E tradNode class F pointnetNode class 分类任务性能 classSubgraph class 分割任务性能 segSubgraph class 计算效率 efficiencySubgraph linkStyle 0,1,2,3,4,5,6 stroke-width:1.5px
graph TD
subgraph 分类任务性能
A["传统方法<br/>准确率: 70-80%<br/>特征: 手工设计"]
B["PointNet<br/>准确率: 89.2%<br/>特征: 端到端学习"]
C["PointNet++<br/>准确率: 91.9%<br/>特征: 层次化表示"]
D["Point-Transformer<br/>准确率: 93.7%<br/>特征: 自注意力"]
end
subgraph 分割任务性能
E["传统方法<br/>mIoU: 60-70%<br/>依赖: 几何特征"]
F["PointNet<br/>mIoU: 83.7%<br/>依赖: 全局特征"]
G["PointNet++<br/>mIoU: 85.1%<br/>依赖: 局部+全局"]
H["Point-Transformer<br/>mIoU: 87.3%<br/>依赖: 长距离关系"]
end
subgraph 计算效率
I["推理速度<br/>FPS"]
J["内存占用<br/>GPU Memory"]
K["训练时间<br/>Convergence"]
end
A --> E
B --> F
C --> G
D --> H
B --> I
C --> J
D --> K
classDef tradNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef pointnetNode fill:#64b5f6,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef pointnet2Node fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef transformerNode fill:#4caf50,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef metricNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef classSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold
classDef segSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold
classDef efficiencySubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold
class A tradNode
class B,I pointnetNode
class C,G,J pointnet2Node
class D,H,K transformerNode
class E tradNode
class F pointnetNode
class 分类任务性能 classSubgraph
class 分割任务性能 segSubgraph
class 计算效率 efficiencySubgraph
linkStyle 0,1,2,3,4,5,6 stroke-width:1.5px
图11.25:PointNet系列网络在不同任务上的性能对比
14.5.2 网络架构演进分析
Code
graph LR subgraph 技术演进路径 A["PointNet<br/>(2017)"] B["PointNet++<br/>(2017)"] C["Point-Transformer<br/>(2021)"] end subgraph 关键创新点 D["对称函数<br/>置换不变性"] E["层次采样<br/>局部结构"] F["自注意力<br/>长距离依赖"] end subgraph 应用拓展 G["分类分割<br/>基础任务"] H["目标检测<br/>复杂场景"] I["场景理解<br/>语义分析"] end A --> B --> C A --> D B --> E C --> F D --> G E --> H F --> I classDef evolutionNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef innovationNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef applicationNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px classDef evolutionSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold classDef innovationSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold classDef applicationSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold class A,B,C evolutionNode class D,E,F innovationNode class G,H,I applicationNode class 技术演进路径 evolutionSubgraph class 关键创新点 innovationSubgraph class 应用拓展 applicationSubgraph linkStyle 0,1,2,3,4,5,6,7 stroke-width:1.5px
graph LR
subgraph 技术演进路径
A["PointNet<br/>(2017)"]
B["PointNet++<br/>(2017)"]
C["Point-Transformer<br/>(2021)"]
end
subgraph 关键创新点
D["对称函数<br/>置换不变性"]
E["层次采样<br/>局部结构"]
F["自注意力<br/>长距离依赖"]
end
subgraph 应用拓展
G["分类分割<br/>基础任务"]
H["目标检测<br/>复杂场景"]
I["场景理解<br/>语义分析"]
end
A --> B --> C
A --> D
B --> E
C --> F
D --> G
E --> H
F --> I
classDef evolutionNode fill:#42a5f5,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef innovationNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef applicationNode fill:#66bb6a,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:14px,border-radius:8px
classDef evolutionSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold
classDef innovationSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold
classDef applicationSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold
class A,B,C evolutionNode
class D,E,F innovationNode
class G,H,I applicationNode
class 技术演进路径 evolutionSubgraph
class 关键创新点 innovationSubgraph
class 应用拓展 applicationSubgraph
linkStyle 0,1,2,3,4,5,6,7 stroke-width:1.5px
图11.26:PointNet系列网络的技术演进与应用拓展
14.5.3 数据集性能基准测试
Code
graph TD subgraph ModelNet40分类 A["PointNet: 89.2%<br/>首次端到端学习"] B["PointNet++: 91.9%<br/>层次特征提升"] C["Point-Transformer: 93.7%<br/>注意力机制优化"] end subgraph ShapeNet分割 D["PointNet: 83.7% mIoU<br/>全局特征局限"] E["PointNet++: 85.1% mIoU<br/>局部细节改善"] F["Point-Transformer: 87.3% mIoU<br/>长距离建模"] end subgraph S3DIS场景分割 G["PointNet: 47.6% mIoU<br/>复杂场景挑战"] H["PointNet++: 53.5% mIoU<br/>多尺度处理"] I["Point-Transformer: 58.0% mIoU<br/>上下文理解"] end subgraph 性能提升因素 J["数据增强<br/>旋转、缩放、噪声"] K["网络深度<br/>更多层次特征"] L["注意力机制<br/>自适应权重"] M["多任务学习<br/>联合优化"] end A --> D --> G B --> E --> H C --> F --> I J --> A K --> B L --> C M --> C classDef modelnetNode fill:#64b5f6,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef shapenetNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef s3disNode fill:#4caf50,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef factorNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef modelnetSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold classDef shapenetSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold classDef s3disSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold classDef factorSubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold class A,B,C modelnetNode class D,E,F shapenetNode class G,H,I s3disNode class J,K,L,M factorNode class ModelNet40分类 modelnetSubgraph class ShapeNet分割 shapenetSubgraph class S3DIS场景分割 s3disSubgraph class 性能提升因素 factorSubgraph linkStyle 0,1,2,3,4,5,6,7,8 stroke-width:1.5px
graph TD
subgraph ModelNet40分类
A["PointNet: 89.2%<br/>首次端到端学习"]
B["PointNet++: 91.9%<br/>层次特征提升"]
C["Point-Transformer: 93.7%<br/>注意力机制优化"]
end
subgraph ShapeNet分割
D["PointNet: 83.7% mIoU<br/>全局特征局限"]
E["PointNet++: 85.1% mIoU<br/>局部细节改善"]
F["Point-Transformer: 87.3% mIoU<br/>长距离建模"]
end
subgraph S3DIS场景分割
G["PointNet: 47.6% mIoU<br/>复杂场景挑战"]
H["PointNet++: 53.5% mIoU<br/>多尺度处理"]
I["Point-Transformer: 58.0% mIoU<br/>上下文理解"]
end
subgraph 性能提升因素
J["数据增强<br/>旋转、缩放、噪声"]
K["网络深度<br/>更多层次特征"]
L["注意力机制<br/>自适应权重"]
M["多任务学习<br/>联合优化"]
end
A --> D --> G
B --> E --> H
C --> F --> I
J --> A
K --> B
L --> C
M --> C
classDef modelnetNode fill:#64b5f6,stroke:#1565c0,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef shapenetNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef s3disNode fill:#4caf50,stroke:#2e7d32,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef factorNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef modelnetSubgraph fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#0d47a1,font-weight:bold
classDef shapenetSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold
classDef s3disSubgraph fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px,color:#1b5e20,font-weight:bold
classDef factorSubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold
class A,B,C modelnetNode
class D,E,F shapenetNode
class G,H,I s3disNode
class J,K,L,M factorNode
class ModelNet40分类 modelnetSubgraph
class ShapeNet分割 shapenetSubgraph
class S3DIS场景分割 s3disSubgraph
class 性能提升因素 factorSubgraph
linkStyle 0,1,2,3,4,5,6,7,8 stroke-width:1.5px
图11.27:PointNet系列网络在主要数据集上的性能基准
14.5.4 应用场景适应性分析
Code
graph TD subgraph 室内场景 A["家具识别<br/>PointNet++适用"] B["房间分割<br/>Point-Transformer优势"] C["物体检测<br/>层次特征重要"] end subgraph 室外场景 D["自动驾驶<br/>实时性要求"] E["城市建模<br/>大规模处理"] F["地形分析<br/>多尺度特征"] end subgraph 工业应用 G["质量检测<br/>精度要求高"] H["机器人抓取<br/>几何理解"] I["逆向工程<br/>形状重建"] end subgraph 技术挑战 J["密度不均<br/>采样策略"] K["噪声干扰<br/>鲁棒性"] L["计算效率<br/>实时处理"] M["泛化能力<br/>跨域适应"] end A --> J B --> K C --> L D --> L E --> M F --> J G --> K H --> L I --> M classDef indoorNode fill:#4db6ac,stroke:#00796b,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef outdoorNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef industrialNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef challengeNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px classDef indoorSubgraph fill:#e0f2f1,stroke:#00796b,stroke-width:2px,color:#004d40,font-weight:bold classDef outdoorSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold classDef industrialSubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold classDef challengeSubgraph fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#b71c1c,font-weight:bold class A,B,C indoorNode class D,E,F outdoorNode class G,H,I industrialNode class J,K,L,M challengeNode class 室内场景 indoorSubgraph class 室外场景 outdoorSubgraph class 工业应用 industrialSubgraph class 技术挑战 challengeSubgraph linkStyle 0,1,2,3,4,5,6,7,8 stroke-width:1.5px
graph TD
subgraph 室内场景
A["家具识别<br/>PointNet++适用"]
B["房间分割<br/>Point-Transformer优势"]
C["物体检测<br/>层次特征重要"]
end
subgraph 室外场景
D["自动驾驶<br/>实时性要求"]
E["城市建模<br/>大规模处理"]
F["地形分析<br/>多尺度特征"]
end
subgraph 工业应用
G["质量检测<br/>精度要求高"]
H["机器人抓取<br/>几何理解"]
I["逆向工程<br/>形状重建"]
end
subgraph 技术挑战
J["密度不均<br/>采样策略"]
K["噪声干扰<br/>鲁棒性"]
L["计算效率<br/>实时处理"]
M["泛化能力<br/>跨域适应"]
end
A --> J
B --> K
C --> L
D --> L
E --> M
F --> J
G --> K
H --> L
I --> M
classDef indoorNode fill:#4db6ac,stroke:#00796b,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef outdoorNode fill:#ba68c8,stroke:#7b1fa2,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef industrialNode fill:#ffb74d,stroke:#e65100,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef challengeNode fill:#ef5350,stroke:#c62828,color:white,stroke-width:2px,font-weight:bold,font-size:13px,border-radius:8px
classDef indoorSubgraph fill:#e0f2f1,stroke:#00796b,stroke-width:2px,color:#004d40,font-weight:bold
classDef outdoorSubgraph fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px,color:#4a148c,font-weight:bold
classDef industrialSubgraph fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#bf360c,font-weight:bold
classDef challengeSubgraph fill:#ffebee,stroke:#c62828,stroke-width:2px,color:#b71c1c,font-weight:bold
class A,B,C indoorNode
class D,E,F outdoorNode
class G,H,I industrialNode
class J,K,L,M challengeNode
class 室内场景 indoorSubgraph
class 室外场景 outdoorSubgraph
class 工业应用 industrialSubgraph
class 技术挑战 challengeSubgraph
linkStyle 0,1,2,3,4,5,6,7,8 stroke-width:1.5px